Show simple item record

dc.contributor.authorFertig, Elana J.
dc.contributor.authorFavorov, Alexander V.
dc.contributor.authorOchs, Michael F.
dc.date.accessioned2018-04-22T15:24:47Z
dc.date.available2018-04-22T15:24:47Z
dc.date.issued2013
dc.identifier.citationIdentifying context-specific transcription factor targets from prior knowledge and gene expression data. (2012). 2012 IEEE International Conference on Bioinformatics and Biomedicine, Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference on, 1.en_US
dc.identifier.urihttps://dx.doi.org/10.1109/TNB.2013.2263390
dc.descriptionFile not available for download due to copyright restrictionsen_US
dc.description.abstractNumerous methodologies, assays, and databases presently provide candidate targets of transcription factors (TFs). However, TFs rarely regulate their targets universally. The context of activation of a TF can change the transcriptional response of targets. Direct multiple regulation typical to mammalian genes complicates direct inference of TF targets from gene expression data. We present a novel statistic that infers context-specific TF regulation based upon the CoGAPS algorithm, which infers overlapping gene expression patterns resulting from coregulation. Numerical experiments with simulated data showed that this statistic correctly inferred targets that are common to multiple TFs, except in cases where the signal from a TF is negligible relative to noise level and signal from other TFs. The statistic is robust to moderate levels of error in the simulated gene sets, identifying fewer false positives than false negatives. Significantly, the regulatory statistic refines the number of TF targets relevant to cell signaling in gastrointestinal stromal tumors (GIST) to genes consistent with the phosphorylation patterns of TFs identified in previous studies. As formulated, the proposed regulatory statistic has wide applicability to inferring set membership in integrated datasets. This statistic could be naturally extended to account for prior probabilities of set membership or to add candidate gene targets.en_US
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectgenomicsen_US
dc.subjectBioinformaticsen_US
dc.subjectgenetic expressionen_US
dc.titleIdentifying context-specific transcription factor targets from prior knowledge and gene expression dataen_US
dc.typeArticleen_US
dc.typeTexten_US
prism.publicationNameIEEE Transactions on NanoBioscience
prism.volume12
prism.issueIdentifier3
prism.publicationDate2013
prism.startingPage142
prism.endingPage149
dc.identifier.handlehttps://dr.tcnj.edu/handle/2900/2294


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record