Show simple item record

dc.contributor.authorCurtis, Cynthia
dc.contributor.authorBoden, Hans U.
dc.date.accessioned2018-05-19T18:28:51Z
dc.date.available2018-05-19T18:28:51Z
dc.date.issued2016
dc.identifier.citationBoden, H. U., & Curtis, C. L. (n.d). The SL(2, C) Casson Invariant for Knots and the (A)over-cap-polynomial. Canadian Journal Of Mathematics-Journal Canadien De Mathematiques, 68(1), 3-23.en_US
dc.identifier.urihttp://dx.doi.org/10.4153/CJM-2015-025-5
dc.descriptionFile not available for download due to copyright restrictionsen_US
dc.description.abstractIn this paper, we extend the definition of the SL(2, C) Casson invariant to arbitrary knots K in integral homology 3-spheres and relate it to the m-degree of the (A) over cap -polynomial of K. We prove a product formula for the (A) over cap -polynomial of the connected sum K-1#K-2 of two knots in S-3 and deduce additivity of the SL(2, C) Casson knot invariant under connected sums for a large class of knots in S-3. We also present an example of a nontrivial knot K in S-3 with trivial (A) over cap -polynomial and trivial SL(2, C) Casson knot invariant, showing that neither of these invariants detect the unknot.en_US
dc.language.isoen_USen_US
dc.publisherCanadian Journal of Mathematicsen_US
dc.subjectKnotsen_US
dc.subject3-manifoldsen_US
dc.subjectcharacter varietyen_US
dc.subjectCasson invarianten_US
dc.subjectA-polynomialen_US
dc.titleThe SL(2,C) Casson invariant for knots and the Aˆ-polynomialen_US
dc.typeArticleen_US
dc.typeTexten_US
prism.publicationNameCanadian Journal of Mathematics
prism.volume68
prism.issueIdentifier1
prism.publicationDate2016
prism.startingPage3
prism.endingPage23
dc.identifier.handlehttps://dr.tcnj.edu/handle/2900/2491


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record