dc.contributor.author | Curtis, Cynthia | |
dc.contributor.author | Boden, Hans U. | |
dc.date.accessioned | 2018-05-19T18:28:51Z | |
dc.date.available | 2018-05-19T18:28:51Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Boden, H. U., & Curtis, C. L. (n.d). The SL(2, C) Casson Invariant for Knots and the (A)over-cap-polynomial. Canadian Journal Of Mathematics-Journal Canadien De Mathematiques, 68(1), 3-23. | en_US |
dc.identifier.uri | http://dx.doi.org/10.4153/CJM-2015-025-5 | |
dc.description | File not available for download due to copyright restrictions | en_US |
dc.description.abstract | In this paper, we extend the definition of the SL(2, C) Casson invariant to arbitrary knots K in integral homology 3-spheres and relate it to the m-degree of the (A) over cap -polynomial of K. We prove a product formula for the (A) over cap -polynomial of the connected sum K-1#K-2 of two knots in S-3 and deduce additivity of the SL(2, C) Casson knot invariant under connected sums for a large class of knots in S-3. We also present an example of a nontrivial knot K in S-3 with trivial (A) over cap -polynomial and trivial SL(2, C) Casson knot invariant, showing that neither of these invariants detect the unknot. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Canadian Journal of Mathematics | en_US |
dc.subject | Knots | en_US |
dc.subject | 3-manifolds | en_US |
dc.subject | character variety | en_US |
dc.subject | Casson invariant | en_US |
dc.subject | A-polynomial | en_US |
dc.title | The SL(2,C) Casson invariant for knots and the Aˆ-polynomial | en_US |
dc.type | Article | en_US |
dc.type | Text | en_US |
prism.publicationName | Canadian Journal of Mathematics | |
prism.volume | 68 | |
prism.issueIdentifier | 1 | |
prism.publicationDate | 2016 | |
prism.startingPage | 3 | |
prism.endingPage | 23 | |
dc.identifier.handle | https://dr.tcnj.edu/handle/2900/2491 | |