Show simple item record

dc.contributor.authorCurtis, Cynthia
dc.date.accessioned2018-05-22T22:39:57Z
dc.date.available2018-05-22T22:39:57Z
dc.date.issued2001
dc.identifier.citationCurtis, C. (2001). An intersection theory count of the SL2(C) -representations of the fundamental group of a 3-manifold. Topology, 40(4), 773-787.en_US
dc.identifier.urihttps://dx.doi.org/10.1016/S0040-9383(99)00083-X
dc.descriptionFile not available for download due to copyright restrictionsen_US
dc.description.abstractWe define an invariant of closed 3-manifolds counting the signed equivalence classes of representations of the fundamental group in . The invariant is an -analog of the Casson-Walker invariant for SU(2). We reinterpret the invariant algebro-geometrically and show that it is non-negative. We relate the invariant to a generalization of the norm of Culler, Gordon, Luecke and Shalen. We show that an analog of the Casson-Walker knot invariant exists in this setting. We obtain a Dehn surgery formula for the invariant for manifolds which are the result of Dehn surgery on knots in integral homology spheres, where the surgery coefficients obey certain technical conditions.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subject3-manifoldsen_US
dc.subjectCasson invariantsen_US
dc.subjectRepresentation spacesen_US
dc.titleAn intersection theory count of the -representations of the fundamental group of a 3-manifolden_US
dc.typeArticleen_US
dc.typeTexten_US
prism.publicationNameTopology
prism.volume40
prism.issueIdentifier4
prism.publicationDate2001
prism.startingPage773
prism.endingPage787
dc.identifier.handlehttps://dr.tcnj.edu/handle/2900/2521


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record