Show simple item record

dc.contributor.authorBhaskar, Dhananjay
dc.contributor.authorManhart, Angelika
dc.contributor.authorMilzman, Jesse
dc.contributor.authorNardini, John T.
dc.contributor.authorTopaz, Chad M.
dc.contributor.authorZiegelmeier, Lori
dc.date.accessioned2023-05-16T16:35:16Z
dc.date.available2023-05-16T16:35:16Z
dc.date.issued2019-12-18
dc.identifier.citationBhaskar, D., Manhart, A., Milzman, J., Nardini, J. T., Storey, K. M., Topaz, C. M., & Ziegelmeier, L. (2019). Analyzing collective motion with machine learning and topology. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12), 123125. https://doi.org/10.1063/1.5125493en_US
dc.identifier.urihttps://doi.org/10.1063/1.5125493
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027427/
dc.identifier.urihttp://dr.tcnj.edu/handle/2900/4191
dc.descriptionDepartment of Mathematics and Statisticsen_US
dc.description.abstractWe use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.)en_US
dc.language.isoen_USen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectNonlinear systemsen_US
dc.subjectMachine learningen_US
dc.subjectComputer simulationen_US
dc.subjectAgent based modelsen_US
dc.subjectAlgebraic topologyen_US
dc.subjectMathematical modelingen_US
dc.titleAnalyzing collective motion with machine learning and topologyen_US
dc.typeArticleen_US
dc.typeTexten_US
prism.publicationNameChaos: An Interdisciplinary Journal of Nonlinear Scienceen_US
prism.volume29
prism.issueIdentifier12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/